BEST PRACTICES & PEDAGOGY FOR TEACHING SCIENCE IN THE AASD ### **BUILDING UNDERSTANDING** | | Increase | Decrease | |----------|---|---| | 1. | Providing challenging and stimulating opportunities for ALL students to learn science | Providing opportunities that favor certain groups of students | | 2. | Focusing on student understanding and use of scientific knowledge, ideas, and inquiry processes to make informed and responsible | Focusing on student acquisition of information | | | decisions | Providing direct instruction regardless of student's prior knowledge | | 3.
4. | Building on students' prior knowledge to foster conceptual change Sharing responsibility for learning with students by supporting a | Having the teacher be solely responsible for the learning | | ٦. | classroom community with cooperation, shared responsibility and | 4. Traving the teacher be solely responsible for the learning | | | respect | 5. Focusing on recitation of acquired knowledge | | 5. | Providing opportunities for scientific discussion and debate among | | | 6 | students | 6. Treating all students alike and responding to the group as a whole | | 6. | Understanding and responding to individual student's interests, strengths, experiences and needs | 7. Identifying students as skilled/unskilled based on single, high-stakes | | 7. | Fostering growth mindset; mistakes are an essential part of the learning process | assessments | ### PROMOTING INQUIRY | Increase | Decrease | |---|---| | 1. Implementing inquiry as the essential strategies for learning science | Implementing inquiry as a set of processes | | Interpreting and analyzing evidence for developing or revising an explanation Using science as means for communicating, defending and explaining | Getting an answer for the sake of getting an answer | | Student collaboratively grouped to: ask questions, defend conclusions, analyze and synthesize data | Exploring without purpose and using experiments based on recipes | | Developing scientific arguments and explanations by applying the
results of experiments | Analyzing and synthesizing data without defending a conclusion | | Utilizing public communication of student ideas and work to
classmates | Obtaining a conclusion from an investigation without any application of the results | | 7. Providing appropriate scaffolding to support the success of all learners, including but not limited to: visual cues direct instruction of general academic and science specific vocabulary | Having private communication of student ideas and conclusions with teacher only | | - sentence frames, etc. | Expecting student to work without proper background and academic supports | ## **ASSESSING SCIENCE LITERACY** | Increase | Decrease | |---|--| | Teachers and students will continuously assess student understanding of the AASD standards through multiple measures Assessing what students understand and are able to do in science Using assessments for providing students with timely and quality feedback Using assessment data in order to drive and adjust instruction | Only assessing students' recall of factual information at the end of the unit, chapter, or term Assessing what students have memorized Assessing students without any quality feedback Assessments are used without any reflection on instructional practices | # **IMPLEMENTING THE CURRICULUM** | Increase | Decrease | |--|---| | Selecting, adapting, and implementing curriculum in a consistent scope and sequence across the district Curriculum that emphasizes active and extended scientific inquiry Learning disciplines (physical, life, earth sciences) in a current and relevant context Studying a few fundamental, unifying science concepts in-depth Studying science as both an application of concepts and a process of inquiry Connecting science to other content areas In connecting science to other content areas, it should not be replaced by those content areas within the process. | Inconsistently following curriculum scope and sequence Curriculum dominated by presentations of scientific knowledge through lecture, text, and demonstration Studying disciplines (physical, life, earth science) in isolation Broad coverage of disconnected science topics Separating science knowledge and science process Treating science as a subject isolated from other school subjects or placing science into other content areas without any separate focus science time | Updated April 23, 2018